

Postgraduate course
in

Evaluation and comparison of method of measurements

Day 3 (part 2)

Kappa (κ) and design considerations

Niels Trolle Andersen

Dept. of Biostatistics, Aarhus University

Evaluation and comparison of method of measurements, Day 3, June 2011

1

Introduction

Until now: **continuous data**

What about **categorical data?**

As in other situations (ex regression analysis) it is much more complicated:

the analysis
the interpretations
the requirement to sample size etc.

Today: A little bit about **kappa (κ)**
(the presentation maybe biased...)

and at the end

design considerations (in general)

Evaluation and comparison of method of measurements, Day 3, June 2011

2

Kappa statistics

observer 1

	ill	healthy	total	
ill	22	4	26	
observer 2	healthy	8	45	53
total	30	49	79	

How well do the observers agree?

The observers agree on 67 out of 79 i.e.

$$P_{\text{obs}} = (22+45)/79 = 0.85 = 85\%$$

The chance of 'random' agreement

$$P_{\text{chance}} = (30*26+49*53)/(79*79) = 0.54 = 54\%$$

Can we describe the agreement in just one number?

Evaluation and comparison of method of measurements, Day 3, June 2011

3

Kappa statistics General setup

	observer 1			
	ill	healthy	total	
ill	a	b	a+b	
observer 2	healthy	c	d	c+d
total	a+c	b+d	n	

Evaluation and comparison of method of measurements, Day 3, June 2011

4

Kappa statistics

Observed agreement

$$p_{obs} = (a+d)/n$$

The chance of 'random' agreement (if for example they looked at different things):

$$p_{chance} = ((a+c)*(a+b) + (d+c)*(d+b)) / n^2$$

Kappa (κ) is the proportion of additional agreement:

$$\kappa = (p_{obs} - p_{chance}) / (1 - p_{chance})$$

An easy formula for the se of κ (you can find 'better' formulas):

$$se(\kappa) = \sqrt{\frac{p_{obs}(1-p_{obs})}{n(1-p_{chance})^2}}$$

Evaluation and comparison of method of measurements, Day 3, June 2011

5

The observers agree on 67 out of 79 i.e.

$$P_{obs} = (22+45)/79 = 0.85 = 85\%$$

The chance of 'random' agreement

$$P_{chance} = (30*26+49*53)/(79*79) = 0.54 = 54\%$$

Kappa (κ) is the proportion of additional agreement:

$$\kappa = (P_{obs} - P_{chance}) / (1 - P_{chance})$$

$$= (0.85 - 0.54) / (1 - 0.54)$$

$$= 0.67$$

$$se(\kappa) = 0.088$$

95% CI for κ (approximately): (0.50, 0.84)

Evaluation and comparison of method of measurements, Day 3, June 2011

6

Stata:

```
. kap obs1 obs2
      Expected
      Agreement  Agreement  Kappa  Std. Err.      Z      Prob>Z
      84.81%  54.11%  0.6690  0.1118  5.98  0.0000
```

```
. kapci obs1 obs2
      N=79
```

```
Kappa (95% CI) = 0.669 (0.498 - 0.840)  (A)
```

A = analytical

```
. kapci obs1 obs2, estim( bc ) reps(20000)
This may take quite a long time. Please wait ...
      B=20000 N=79
```

```
Kappa (95% CI) = 0.669 (0.486 - 0.831)  (BC)
```

BC = bias corrected

kapci isn't a 'default' command in Stata (but can be downloaded)

Evaluation and comparison of method of measurements, Day 3, June 2011

7

		ill	observer 4 healthy	total
observer 3	ill	22	0	22
	healthy	12	45	57
	total	32	45	79

Here we have $\kappa=0.68$; almost the same as before: Do we have the same agreement as before?

Do we have a systematic difference between the observers?

We have a statistically significant difference between the two observers with respect to the portions of persons judges 'ill'.
(McNemar test, day 4 basic course)

Evaluation and comparison of method of measurements, Day 3, June 2011

8

Stata:..

```
. ci obs3,bin
      Obs      Mean    Std. Err.      [95% Conf. Interval]
obs3 |    79  .278481  .0504322  .183455  .3907351
. ci obs4,bin
      Obs      Mean    Std. Err.      [95% Conf. Interval]
obs4 |    79  .4303797  .0557064  .3194235  .5467142
. mcc obs3 obs4
(table)
McNemar's chi2(1) =      12.00  Prob > chi2 = 0.0005
Exact McNemar significance probability      = 0.0005
Proportion with factor
  Cases  .278481
  Controls  .4303797  [95% Conf. Interval]
  difference -.1518987  -.2437041  -.0600933
  ratio  .6470588  .504813  .8293866
  rel. diff. -.2666667  -.4364744  -.096859
  odds ratio  0  0  .3598938  (exact)
```

Evaluation and comparison of method of measurements, Day 3, June 2011

9

Stata:..

```
. kap obs3 obs4
      Expected
      Agreement  Agreement  Kappa  Std. Err.  Z  Prob>Z
84.81%  53.08%  0.6762  0.1064  6.35  0.0000
. kapci obs3 obs4
N=79
Kappa (95% CI) = 0.676 (0.517 - 0.836) (A)
A = analytical
. kapci obs3 obs4,estim(bc) reps(20000)
This may take quite a long time. Please wait ...
B=20000 N=79
Kappa (95% CI) = 0.676 (0.516 - 0.832) (BC)
BC = bias corrected
```

Evaluation and comparison of method of measurements, Day 3, June 2011

10

		observer 1		total
		ill	healthy	
observer 2	ill	7	4	11
	healthy	8	60	68
total		15	64	79

In this example $\kappa=0.45$; less than as before but the same observed agreement.

How much better is 0.68 compared to 0.45????

Evaluation and comparison of method of measurements, Day 3, June 2011

11

Stata:..

```
. kap obs5 obs6
      Expected
      Agreement  Agreement  Kappa  Std. Err.  Z  Prob>Z
84.81%  72.38%  0.4501  0.1106  4.07  0.0000
. kapci obs5 obs6
N=79
Kappa (95% CI) = 0.450 (0.190 - 0.710) (A)
A = analytical
. kapci obs5 obs6,estim(bc) reps(20000)
This may take quite a long time. Please wait ...
B=20000 N=79
Kappa (95% CI) = 0.450 (0.165 - 0.704) (BC)
BC = bias corrected
```

Evaluation and comparison of method of measurements, Day 3, June 2011

12

An example with 4 categories:

		pat2				
		1	2	3	4	Total
pat1						
1		22	2	2	0	26
2		5	7	14	0	26
3		0	2	36	0	38
4		0	1	17	10	28
	Total	27	12	69	10	118

If we use the same definition as above we get

```
. kap pat1 pat2
      Expected
      Agreement   Agreement   Kappa   Std. Err.      Z      Prob>Z
-----+
 63.56%    28.12%    0.4930    0.0501    9.83    0.0000

. kapci pat1 pat2,estim( bc ) reps(20000)
Kappa (95% CI) = 0.493 ( 0.385 - 0.606)      (BC)
```

It doesn't take into account the 'degree' of agreement

Evaluation and comparison of method of measurements, Day 3, June 2011

13

		pat2				
		1	2	3	4	Total
pat1						
1		22	2	2	0	26
2		5	7	14	0	26
3		0	2	36	0	38
4		0	1	17	10	28
	Total	27	12	69	10	118

We can 'weight' the agreement (see help or stata manual for details)

```
. kap pat1 pat2,wgt(w)
```

Ratings weighted by:

1.0000	0.6667	0.3333	0.0000
0.6667	1.0000	0.6667	0.3333
0.3333	0.6667	1.0000	0.6667
0.0000	0.3333	0.6667	1.0000

		Expected					
		Agreement	Agreement	Kappa	Std. Err.	Z	Prob>Z
87.01%		63.00%	63.00%	0.6488	0.0631	10.29	0.0000
Compared to (from the previous slide)		63.56%	28.12%	0.4930	0.0501	9.83	0.0000

Evaluation and comparison of method of measurements, Day 3, June 2011

14

Kappa statistics

```
. kap pat1 pat2,wgt(w2)
      Expected
      Agreement   Agreement   Kappa   Std. Err.      Z      Prob>Z
-----+
 95.10%    77.35%    0.7838    0.0910    8.61    0.0000

Compared to (from the previous slides)
 87.01%    63.00%    0.6488    0.0631    10.29    0.0000
 63.56%    28.12%    0.4930    0.0501    9.83    0.0000
```

You can also define your own weights..

Evaluation and comparison of method of measurements, Day 3, June 2011

15

		pat2				
		1	2	3	4	Total
pat1						
1		22	2	2	0	26
2		5	7	14	0	26
3		0	2	36	0	38
4		0	1	17	10	28
	Total	27	12	69	10	118

Do the observes have the same distribution:

```
signrank pat1=pat2
Wilcoxon signed-rank test

      sign   obs   sum ranks   expected
-----+
  positive |    25    2409    2085.5
  negative |    18    1762    2085.5
    zero |     75    2850    2850
-----+
    all |   118    7021    7021
```

unadjusted variance	138664.75
adjustment for ties	-1333.00
adjustment for zeros	-35862.50
adjusted variance	101469.25

```
Ho: pat1 = pat2
      z = 1.016
      Prob > |z| = 0.3098
```

Evaluation and comparison of method of measurements, Day 3, June 2011

16

pat1	pat2	1	2	3	4	Total
1		22	2	2	0	26
2		5	7	14	0	26
3		0	2	36	0	38
4		0	1	17	10	28
Total		27	12	69	10	118

Alternative: A kappa-value for each category

Category 1:

	0	1	Total
0	87	5	92
1	4	22	26
Total	91	27	118

Agreement	Agreement	Kappa	Expected Std. Err.	Z	Prob>Z
92.37%	65.17%	0.7810	0.0920	8.49	0.0000

No systematic difference between the observers

Evaluation and comparison of method of measurements, Day 3, June 2011

17

Category 2	0	2	Total	Agreement	80%
0	87	5	92	Expected agreement	72%
2	19	7	26	Kappa	27%
Total	106	12	118		

Category 3	0	3	Total	Agreement	70%
0	47	33	80	Expected agreement	47%
3	2	36	38	Kappa	44%
Total	49	69	118		

Category 4	0	4	Total	Agreement	85%
0	90	0	90	Expected agreement	72%
4	18	10	28	Kappa	46%
Total	108	10	118		

Systematic difference?

Evaluation and comparison of method of measurements, Day 3, June 2011

18

Kappa statistics

Other extensions:

Repetitions within an observer.

More observes.

Different observers. (look in the stata manual)

Other models

Describing the 'Probability of agreement/disagreement

Models like the models we used analyzing continuous data

Evaluation and comparison of method of measurements, Day 3, June 2011

19

Kappa statistics

Remarks:

The **K** doesn't separate systematic and random variation

When does the observers have the same distribution of the answers?

The **K** is related to correlations i.e. that it depends on the 'variation' in the sample.

The sample used for estimating **K** should be a random sample from the population (latent variable?)

When is **K** large/good?

Knowing the truth (diagnostic test?)

Evaluation and comparison of method of measurements, Day 3, June 2011

20

Design considerations

When comparing/evaluating methods of measuring it is important:

- to realize how the method is going to be used
- to identify the main contributions to the variation in the data
- to define what is acceptable/unacceptable (in advance) and how check it

Evaluation and comparison of method of measurements, Day 3, June 2011

21

Design considerations

Contribution to variation in data

or

Sources of variation

or

Variance components

Biological variation (systematic and or random):

inter-subject variation

intra subject variation:

day to day variation

intra day variation

other with-in subject variation

Evaluation and comparison of method of measurements, Day 3, June 2011

22

Design considerations

Contribution to variation in data

Technical variation (systematic and or random):

inter-method variation

inter-device variation

intra method/device variation:

day to day variation

intra day variation

other with-in method variation

Evaluation and comparison of method of measurements, Day 3, June 2011

23

Design considerations

Which of the different variance-components do we want to estimate (may be combinations) depends on **how the method is going to be used:**

On individuals or groups?

Direct measurements or changes?

If changes how? (directly or as a difference)

How many repetitions (and how)?

Evaluation and comparison of method of measurements, Day 3, June 2011

24

What is acceptable/unacceptable?
The size of some or combinations of sd ?

The precision of an estimated standard deviation
- the 95% CI for σ

$$\hat{\sigma} \cdot \sqrt{\frac{df}{\chi^2_{df}(0.975)}} \leq \sigma \leq \hat{\sigma} \cdot \sqrt{\frac{df}{\chi^2_{df}(0.025)}}$$

$$\hat{\sigma} \cdot l(df) \leq \sigma \leq \hat{\sigma} \cdot u(df)$$

df	$l(df)$	$u(df)$
5	0.624	2.453
10	0.699	1.755
15	0.739	1.548
20	0.765	1.444
25	0.784	1.380
50	0.837	1.243
150	0.899	1.128
200	0.911	1.109

Evaluation and comparison of method of measurements, Day 3, June 2011

25

Design considerations

Showing superiority of one method compared to another method:

- Smaller measurement error

sample size calculation ($\alpha=0.05$, power 0.8)

Ratio between sd 's: = 2 $df=18$ in each group

= 1.5 $df=49$ in each group

= 1.25 $df=192$ in each group

($df=($ no of measurement – number of subject)

and at least 2 measurement on each subject)

- ????? (can a method with a larger measurement error be superior?)

Evaluation and comparison of method of measurements, Day 3, June 2011

26

Design considerations

Comparing/evaluating methods of measuring it a **never ending process** and consist of contributions from different studies.

It is not possible to do
'the ultimative comparison/evaluation'

Where to start (or stop)?

Evaluation and comparison of method of measurements, Day 3, June 2011

27

Evaluation???

Evaluation and comparison of method of measurements, Day 3, June 2011

28